
    Owg                    P   U d dl mZ d dlmZ d dlZd dlmZ d dlm	Z	 d dl
mZmZ  G d de      Z G d	 d
e      ZdZe G d de             Ze G d de             Z ej$                  ej&                         e        ej$                  ej(                         e       iZded<   y)    )annotations)ClassVarN)register_extension_dtype)is_float_dtype)NumericArrayNumericDtypec                      e Zd ZdZ ej
                  ej                        ZeZ	e
dd       Ze
dd       Ze
dd       Zy)	FloatingDtypea  
    An ExtensionDtype to hold a single size of floating dtype.

    These specific implementations are subclasses of the non-public
    FloatingDtype. For example we have Float32Dtype to represent float32.

    The attributes name & type are set when these subclasses are created.
    c                    t         S )zq
        Return the array type associated with this dtype.

        Returns
        -------
        type
        )FloatingArrayclss    R/var/www/horilla/myenv/lib/python3.12/site-packages/pandas/core/arrays/floating.pyconstruct_array_typez"FloatingDtype.construct_array_type   s
         c                    t         S )N)NUMPY_FLOAT_TO_DTYPEr   s    r   _get_dtype_mappingz FloatingDtype._get_dtype_mapping(   s    ##r   c                (    |j                  ||      S )z{
        Safely cast the values to the given dtype.

        "safe" in this context means the casting is lossless.
        )copy)astype)r   valuesdtyper   s       r   
_safe_castzFloatingDtype._safe_cast,   s     }}U}..r   N)returnztype[FloatingArray])r   dict[np.dtype, FloatingDtype])r   
np.ndarrayr   znp.dtyper   boolr   r   )__name__
__module____qualname____doc__npr   float64_default_np_dtyper   _checkerclassmethodr   r   r    r   r   r
   r
      s]     !,H  $ $ / /r   r
   c                  4    e Zd ZdZeZej                  ZdZ	dZ
y)r   a  
    Array of floating (optional missing) values.

    .. warning::

       FloatingArray is currently experimental, and its API or internal
       implementation may change without warning. Especially the behaviour
       regarding NaN (distinct from NA missing values) is subject to change.

    We represent a FloatingArray with 2 numpy arrays:

    - data: contains a numpy float array of the appropriate dtype
    - mask: a boolean array holding a mask on the data, True is missing

    To construct an FloatingArray from generic array-like input, use
    :func:`pandas.array` with one of the float dtypes (see examples).

    See :ref:`integer_na` for more.

    Parameters
    ----------
    values : numpy.ndarray
        A 1-d float-dtype array.
    mask : numpy.ndarray
        A 1-d boolean-dtype array indicating missing values.
    copy : bool, default False
        Whether to copy the `values` and `mask`.

    Attributes
    ----------
    None

    Methods
    -------
    None

    Returns
    -------
    FloatingArray

    Examples
    --------
    Create an FloatingArray with :func:`pandas.array`:

    >>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype())
    <FloatingArray>
    [0.1, <NA>, 0.3]
    Length: 3, dtype: Float32

    String aliases for the dtypes are also available. They are capitalized.

    >>> pd.array([0.1, None, 0.3], dtype="Float32")
    <FloatingArray>
    [0.1, <NA>, 0.3]
    Length: 3, dtype: Float32
    g      ?g        N)r   r    r!   r"   r
   
_dtype_clsr#   nan_internal_fill_value_truthy_value_falsey_valuer(   r   r   r   r   8   s'    7r J 66 MMr   r   az  
An ExtensionDtype for {dtype} data.

This dtype uses ``pd.NA`` as missing value indicator.

Attributes
----------
None

Methods
-------
None

Examples
--------
For Float32Dtype:

>>> ser = pd.Series([2.25, pd.NA], dtype=pd.Float32Dtype())
>>> ser.dtype
Float32Dtype()

For Float64Dtype:

>>> ser = pd.Series([2.25, pd.NA], dtype=pd.Float64Dtype())
>>> ser.dtype
Float64Dtype()
c                  X    e Zd ZU ej                  ZdZded<   ej                  d      Z
y)Float32DtypeFloat32ClassVar[str]namefloat32r   N)r   r    r!   r#   r4   typer3   __annotations___dtype_docstringformatr"   r(   r   r   r0   r0      (    ::D#D-#%%I%6Gr   r0   c                  X    e Zd ZU ej                  ZdZded<   ej                  d      Z
y)Float64DtypeFloat64r2   r3   r$   r5   N)r   r    r!   r#   r$   r6   r3   r7   r8   r9   r"   r(   r   r   r<   r<      r:   r   r<   r   r   )
__future__r   typingr   numpyr#   pandas.core.dtypes.baser   pandas.core.dtypes.commonr   pandas.core.arrays.numericr   r   r
   r   r8   r0   r<   r   r4   r$   r   r7   r(   r   r   <module>rD      s    "   < 4%/L %/PBL BJ > 7= 7 7 7= 7 7 BHHRZZ,.BHHRZZ,.7 3 r   