
    Owgl                        d dl mZ d dlmZ d dlmZmZmZmZ d dl	m
Z
mZ d dlmZmZmZ d dlmZmZmZmZmZmZmZmZmZ d dlmZmZ erd dlmZmZm Z  d d	l!m"Z"m#Z# d d
l$m%Z%  G d de      Z& G d dee&      Z'y)    )annotations)dedent)TYPE_CHECKINGAnyCallableLiteral)deprecate_kwargdoc)BaseIndexerExpandingIndexerGroupbyIndexer)	_shared_docscreate_section_headerkwargs_numeric_onlynumba_notestemplate_headertemplate_returnstemplate_see_alsowindow_agg_numba_parameterswindow_apply_parameters)BaseWindowGroupbyRollingAndExpandingMixin)AxisQuantileInterpolationWindowingRankType)	DataFrameSeries)NDFramec                      e Zd ZU dZg dZded<   	 	 	 	 df	 	 	 	 	 	 	 	 	 dg fdZdhdZ ee	d    e
d	       e
d
      dd       fd       ZeZ ee ed      e ed      e ed       e
d      ddd
      didj fd       Z ee ed      e ed      e ed      e ed       e
d      ddd      	 	 	 	 	 dk	 	 	 	 	 	 	 	 	 	 	 dl fd       Z ee ed      e e        ed      e ed      e ed      e ed       e
d      ddd      	 	 	 dm	 	 	 	 	 dn fd        Z ee ed      e e        ed      e ed      e ed      e ed       e
d!      dd"d#      	 	 	 dm	 	 	 	 	 dn fd$       Z ee ed      e e        ed      e ed      e ed      e ed       e
d%      dd&d'      	 	 	 dm	 	 	 	 	 dn fd(       Z ee ed      e e        ed      e ed      e ed      e ed       e
d)      dd*d*      	 	 	 dm	 	 	 	 	 dn fd+       Z ee ed      e e        ed      e ed      e ed      e ed       e
d,      dd-d-      	 	 	 dm	 	 	 	 	 dn fd.       Z ee ed       e
d/      j9                  d0dd      e ed1       ed      e ed      d2e ed       e
d3      j9                  d0dd       ed       e
d4      j9                  d0dd      dd5d6      	 	 	 	 do	 	 	 	 	 	 	 dp fd7       Z ee ed       e
d/      j9                  d0dd      e ed1       ed      e ed      d8e ed       e
d9      j9                  d0dd       ed       e
d:      j9                  d0dd      dd;d<      	 	 	 	 do	 	 	 	 	 	 	 dp fd=       Z ee ed       e
d/      j9                  d0dd      e ed      e ed      e ed      d> ed       e
d?      j9                  d0dd      dd@dA      dqdr fdB       Z ee ed      e ed      e ed      dCe ed      dD ed       e
dE      ddFdG      didj fdH       Z  ee ed      e ed      e ed      dIe ed      dJ ed       e
dK      j9                  d0dd      ddLdM      didj fdN       Z! ee ed       e
dO      j9                  d0dd      e ed      e ed      e ed       e
dP      ddQdQ       e"dQdRS      	 	 ds	 	 	 	 	 dt fdT              Z# eedU ed       e
dV      j9                  d0dd      e ed      e ed      e ed       e
dW      j9                  d0dd      ddXdX      	 	 	 	 du	 	 	 	 	 	 	 dv fdY       Z$ ee ed       e
dZ      j9                  d0dd      e ed      e ed      e ed       e
d[      dd\d]      	 	 	 	 dw	 	 	 	 	 	 	 dx fd^       Z% ee ed       e
d_      j9                  d0dd      e ed      e ed       e
d`      j9                  d0dd      e ed       e
da       ed       e
db      ddcdd      	 	 	 	 dw	 	 	 	 	 	 	 dx fde       Z& xZ'S )y	Expandinga  
    Provide expanding window calculations.

    Parameters
    ----------
    min_periods : int, default 1
        Minimum number of observations in window required to have a value;
        otherwise, result is ``np.nan``.

    axis : int or str, default 0
        If ``0`` or ``'index'``, roll across the rows.

        If ``1`` or ``'columns'``, roll across the columns.

        For `Series` this parameter is unused and defaults to 0.

    method : str {'single', 'table'}, default 'single'
        Execute the rolling operation per single column or row (``'single'``)
        or over the entire object (``'table'``).

        This argument is only implemented when specifying ``engine='numba'``
        in the method call.

        .. versionadded:: 1.3.0

    Returns
    -------
    pandas.api.typing.Expanding

    See Also
    --------
    rolling : Provides rolling window calculations.
    ewm : Provides exponential weighted functions.

    Notes
    -----
    See :ref:`Windowing Operations <window.expanding>` for further usage details
    and examples.

    Examples
    --------
    >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
    >>> df
         B
    0  0.0
    1  1.0
    2  2.0
    3  NaN
    4  4.0

    **min_periods**

    Expanding sum with 1 vs 3 observations needed to calculate a value.

    >>> df.expanding(1).sum()
         B
    0  0.0
    1  1.0
    2  3.0
    3  3.0
    4  7.0
    >>> df.expanding(3).sum()
         B
    0  NaN
    1  NaN
    2  3.0
    3  3.0
    4  7.0
    )min_periodsaxismethodz	list[str]_attributes   c                .    t         |   |||||       y )N)objr!   r"   r#   	selection)super__init__)selfr'   r!   r"   r#   r(   	__class__s         S/var/www/horilla/myenv/lib/python3.12/site-packages/pandas/core/window/expanding.pyr*   zExpanding.__init__|   s&     	# 	 	
    c                    t               S )z[
        Return an indexer class that will compute the window start and end bounds
        )r   )r+   s    r-   _get_window_indexerzExpanding._get_window_indexer   s      !!r.   	aggregatez
        See Also
        --------
        pandas.DataFrame.aggregate : Similar DataFrame method.
        pandas.Series.aggregate : Similar Series method.
        a  
        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
        >>> df
           A  B  C
        0  1  4  7
        1  2  5  8
        2  3  6  9

        >>> df.ewm(alpha=0.5).mean()
                  A         B         C
        0  1.000000  4.000000  7.000000
        1  1.666667  4.666667  7.666667
        2  2.428571  5.428571  8.428571
        zSeries/Dataframe )see_alsoexamplesklassr"   c                *    t        |   |g|i |S )N)r)   r1   )r+   funcargskwargsr,   s       r-   r1   zExpanding.aggregate   s     @ w 7777r.   ReturnszSee AlsoExamplesz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().count()
        a    1.0
        b    2.0
        c    3.0
        d    4.0
        dtype: float64
        	expandingzcount of non NaN observationscount)window_methodaggregation_description
agg_methodc                $    t         |   |      S N)numeric_only)r)   r=   r+   rC   r,   s     r-   r=   zExpanding.count   s    . w},}77r.   
Parametersz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().apply(lambda s: s.max() - 2 * s.min())
        a   -1.0
        b    0.0
        c    1.0
        d    2.0
        dtype: float64
        zcustom aggregation functionapplyc                .    t         |   ||||||      S )N)rawengineengine_kwargsr8   r9   )r)   rF   )r+   r7   rH   rI   rJ   r8   r9   r,   s          r-   rF   zExpanding.apply   s.    B w}'  
 	
r.   Notesz        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().sum()
        a     1.0
        b     3.0
        c     6.0
        d    10.0
        dtype: float64
        sumc                (    t         |   |||      S N)rC   rI   rJ   )r)   rL   r+   rC   rI   rJ   r,   s       r-   rL   zExpanding.sum   %    B w{%'  
 	
r.   z        >>> ser = pd.Series([3, 2, 1, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().max()
        a    3.0
        b    3.0
        c    3.0
        d    4.0
        dtype: float64
        maximummaxc                (    t         |   |||      S rN   )r)   rR   rO   s       r-   rR   zExpanding.max   rP   r.   z        >>> ser = pd.Series([2, 3, 4, 1], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().min()
        a    2.0
        b    2.0
        c    2.0
        d    1.0
        dtype: float64
        minimumminc                (    t         |   |||      S rN   )r)   rU   rO   s       r-   rU   zExpanding.minG  rP   r.   z        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().mean()
        a    1.0
        b    1.5
        c    2.0
        d    2.5
        dtype: float64
        meanc                (    t         |   |||      S rN   )r)   rW   rO   s       r-   rW   zExpanding.meann  s%    B w|%'  
 	
r.   z        >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser.expanding().median()
        a    1.0
        b    1.5
        c    2.0
        d    2.5
        dtype: float64
        medianc                (    t         |   |||      S rN   )r)   rY   rO   s       r-   rY   zExpanding.median  s%    B w~%'  
 	
r.   z
        ddof : int, default 1
            Delta Degrees of Freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.

        
z1.4z/numpy.std : Equivalent method for NumPy array.
z
        The default ``ddof`` of 1 used in :meth:`Series.std` is different
        than the default ``ddof`` of 0 in :func:`numpy.std`.

        A minimum of one period is required for the rolling calculation.

        a  
        >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])

        >>> s.expanding(3).std()
        0         NaN
        1         NaN
        2    0.577350
        3    0.957427
        4    0.894427
        5    0.836660
        6    0.786796
        dtype: float64
        zstandard deviationstdc                *    t         |   ||||      S N)ddofrC   rI   rJ   )r)   r\   r+   r_   rC   rI   rJ   r,   s        r-   r\   zExpanding.std  (    j w{%'	  
 	
r.   z/numpy.var : Equivalent method for NumPy array.
z
        The default ``ddof`` of 1 used in :meth:`Series.var` is different
        than the default ``ddof`` of 0 in :func:`numpy.var`.

        A minimum of one period is required for the rolling calculation.

        a  
        >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])

        >>> s.expanding(3).var()
        0         NaN
        1         NaN
        2    0.333333
        3    0.916667
        4    0.800000
        5    0.700000
        6    0.619048
        dtype: float64
        variancevarc                *    t         |   ||||      S r^   )r)   rc   r`   s        r-   rc   zExpanding.var  ra   r.   z:A minimum of one period is required for the calculation.

z
        >>> s = pd.Series([0, 1, 2, 3])

        >>> s.expanding().sem()
        0         NaN
        1    0.707107
        2    0.707107
        3    0.745356
        dtype: float64
        zstandard error of meansemc                &    t         |   ||      S )N)r_   rC   )r)   re   )r+   r_   rC   r,   s      r-   re   zExpanding.sem4  s    F w{<{@@r.   z:scipy.stats.skew : Third moment of a probability density.
zEA minimum of three periods is required for the rolling calculation.

a           >>> ser = pd.Series([-1, 0, 2, -1, 2], index=['a', 'b', 'c', 'd', 'e'])
        >>> ser.expanding().skew()
        a         NaN
        b         NaN
        c    0.935220
        d    1.414214
        e    0.315356
        dtype: float64
        zunbiased skewnessskewc                $    t         |   |      S rB   )r)   rg   rD   s     r-   rg   zExpanding.skewY  s    : w||66r.   z/scipy.stats.kurtosis : Reference SciPy method.
z<A minimum of four periods is required for the calculation.

a[  
        The example below will show a rolling calculation with a window size of
        four matching the equivalent function call using `scipy.stats`.

        >>> arr = [1, 2, 3, 4, 999]
        >>> import scipy.stats
        >>> print(f"{{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}}")
        -1.200000
        >>> print(f"{{scipy.stats.kurtosis(arr, bias=False):.6f}}")
        4.999874
        >>> s = pd.Series(arr)
        >>> s.expanding(4).kurt()
        0         NaN
        1         NaN
        2         NaN
        3   -1.200000
        4    4.999874
        dtype: float64
        z,Fisher's definition of kurtosis without biaskurtc                $    t         |   |      S rB   )r)   ri   rD   s     r-   ri   zExpanding.kurtx  s    L w||66r.   a  
        quantile : float
            Quantile to compute. 0 <= quantile <= 1.

            .. deprecated:: 2.1.0
                This will be renamed to 'q' in a future version.
        interpolation : {{'linear', 'lower', 'higher', 'midpoint', 'nearest'}}
            This optional parameter specifies the interpolation method to use,
            when the desired quantile lies between two data points `i` and `j`:

                * linear: `i + (j - i) * fraction`, where `fraction` is the
                  fractional part of the index surrounded by `i` and `j`.
                * lower: `i`.
                * higher: `j`.
                * nearest: `i` or `j` whichever is nearest.
                * midpoint: (`i` + `j`) / 2.
        a          >>> ser = pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'])
        >>> ser.expanding(min_periods=4).quantile(.25)
        a     NaN
        b     NaN
        c     NaN
        d    1.75
        e    2.00
        f    2.25
        dtype: float64
        quantileq)old_arg_namenew_arg_namec                (    t         |   |||      S )N)rl   interpolationrC   )r)   rk   )r+   rl   rp   rC   r,   s       r-   rk   zExpanding.quantile  s&    h w'%   
 	
r.   z.. versionadded:: 1.4.0 

a  
        method : {{'average', 'min', 'max'}}, default 'average'
            How to rank the group of records that have the same value (i.e. ties):

            * average: average rank of the group
            * min: lowest rank in the group
            * max: highest rank in the group

        ascending : bool, default True
            Whether or not the elements should be ranked in ascending order.
        pct : bool, default False
            Whether or not to display the returned rankings in percentile
            form.
        a+  
        >>> s = pd.Series([1, 4, 2, 3, 5, 3])
        >>> s.expanding().rank()
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    3.5
        dtype: float64

        >>> s.expanding().rank(method="max")
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    4.0
        dtype: float64

        >>> s.expanding().rank(method="min")
        0    1.0
        1    2.0
        2    2.0
        3    3.0
        4    5.0
        5    3.0
        dtype: float64
        rankc                *    t         |   ||||      S )N)r#   	ascendingpctrC   )r)   rq   )r+   r#   rs   rt   rC   r,   s        r-   rq   zExpanding.rank  s(    H w|%	  
 	
r.   a   
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndexed DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        ddof : int, default 1
            Delta Degrees of Freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.
        a0          >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd'])
        >>> ser1.expanding().cov(ser2)
        a         NaN
        b    0.500000
        c    1.500000
        d    3.333333
        dtype: float64
        zsample covariancecovc                *    t         |   ||||      S N)otherpairwiser_   rC   )r)   ru   r+   rx   ry   r_   rC   r,   s        r-   ru   zExpanding.cov%  s(    b w{%	  
 	
r.   aN  
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndexed DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        z
        cov : Similar method to calculate covariance.
        numpy.corrcoef : NumPy Pearson's correlation calculation.
        ao  
        This function uses Pearson's definition of correlation
        (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).

        When `other` is not specified, the output will be self correlation (e.g.
        all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise`
        set to `True`.

        Function will return ``NaN`` for correlations of equal valued sequences;
        this is the result of a 0/0 division error.

        When `pairwise` is set to `False`, only matching columns between `self` and
        `other` will be used.

        When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame
        with the original index on the first level, and the `other` DataFrame
        columns on the second level.

        In the case of missing elements, only complete pairwise observations
        will be used.

        a1          >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
        >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd'])
        >>> ser1.expanding().corr(ser2)
        a         NaN
        b    1.000000
        c    0.981981
        d    0.975900
        dtype: float64
        correlationcorrc                *    t         |   ||||      S rw   )r)   r|   rz   s        r-   r|   zExpanding.corr]  s(    X w|%	  
 	
r.   )r%   r   singleN)
r'   r   r!   intr"   r   r#   strreturnNone)r   r   )F)rC   bool)FNNNN)r7   zCallable[..., Any]rH   r   rI   !Literal['cython', 'numba'] | NonerJ   dict[str, bool] | Noner8   ztuple[Any, ...] | Noner9   zdict[str, Any] | None)FNN)rC   r   rI   r   rJ   r   )r%   FNN)r_   r   rC   r   rI   r   rJ   r   )r%   F)r_   r   rC   r   )linearF)rl   floatrp   r   rC   r   )averageTFF)r#   r   rs   r   rt   r   rC   r   )NNr%   F)rx   zDataFrame | Series | Nonery   zbool | Noner_   r   rC   r   )(__name__
__module____qualname____doc__r$   __annotations__r*   r0   r
   r   r   r1   aggr   r   r   r   r=   r   rF   r   r   r   rL   rR   rU   rW   rY   replacer\   rc   re   rg   ri   r	   rk   rq   ru   r|   __classcell__)r,   s   @r-   r    r    3   s
   DL ?K>
 

 
 	

 
 

 " 	[!
 
$ !;>8?>8 Ci(j)j)
	
 " ?),8-,8 	l+i(j)j)
	
 " =-6 4804'+(,
 
 
 2	

 .
 %
 &
10
$ 	l+#%i(j)g&j)
	
 " %3: #4804	



 2

 .	

76

 	l+#%i(j)g&j)
	
 " )3: #4804	



 2

 .	

76

 	l+#%i(j)g&j)
	
 " )3: #4804	



 2

 .	

76

 	l+#%i(j)g&j)
	
 " &3: #4804	



 2

 .	

76

 	l+#%i(j)g&j)
	
 " (3: #4804	



 2

 .	

76

 	l+	
 '$A
#E*i(j):g&	
 '$A
j)	
 '$A
! 4Y-` "4804

 
 2	

 .
]-\
 	l+	
 '$A
#E*i(j):g&	
 '$A
j)	
 '$A
! *Y-` "4804

 
 2	

 .
]-\
 	l+	
 '$A
i(j)g&Fj)		
 '$A
! 8A!DAE!DA 	l+i(j)Eg&Qj)		
 " 3587987 	l+i(j):g&Hj)	
( '$A
! NG$J7K$J7 	l+	
$ '$A
i(j)j)
	
 " *W,Z *3? 08"	



 -

 	

 @[,\

 	&l+	
 '$A
i(j)j)	
< '$A
! &w<~ %."
!
 
 	

 
{<z
 	l+	
  '$A
i(j)j)		
 " 3Q)X ,0 $"
(
 
 	

 
U)T
 	l+	
 '$A
i(j)	

 '$A
g&	
. 	j)		
 " -GDN ,0 $"
(
 
 	

 
KDJ
r.   r    c                  J    e Zd ZdZej
                  ej
                  z   ZddZy)ExpandingGroupbyz5
    Provide a expanding groupby implementation.
    c                P    t        | j                  j                  t              }|S )z
        Return an indexer class that will compute the window start and end bounds

        Returns
        -------
        GroupbyIndexer
        )groupby_indiceswindow_indexer)r   _grouperindicesr   )r+   r   s     r-   r0   z$ExpandingGroupby._get_window_indexer  s&     ( MM11+
 r.   N)r   r   )r   r   r   r   r    r$   r   r0    r.   r-   r   r     s%     ''*;*G*GGKr.   r   N)(
__future__r   textwrapr   typingr   r   r   r   pandas.util._decoratorsr	   r
   pandas.core.indexers.objectsr   r   r   pandas.core.window.docr   r   r   r   r   r   r   r   r   pandas.core.window.rollingr   r   pandas._typingr   r   r   pandasr   r   pandas.core.genericr   r    r   r   r.   r-   <module>r      sp    "  
 

 
 

   ,{
( {
|() r.   