
    OwgJ-                    J   d Z ddlmZ ddlmZmZmZ ddlZddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZmZmZ ddlmZmZmZmZ ddlm Z  ddl!m"c m#Z$ ddl%m&Z& erddl'm(Z(m)Z) ddlm*Z* ddl+m,Z, dZ-ddZ.d Z/ddZ0ddZ1	 	 	 d	 	 	 	 	 	 	 	 	 ddZ2ddZ3y)zH
Table Schema builders

https://specs.frictionlessdata.io/table-schema/
    )annotations)TYPE_CHECKINGAnycastN)lib)ujson_loads)	timezones)freq_to_period_freqstr)find_stack_level)	_registry)is_bool_dtypeis_integer_dtypeis_numeric_dtypeis_string_dtype)CategoricalDtypeDatetimeTZDtypeExtensionDtypePeriodDtype)	DataFrame)	to_offset)DtypeObjJSONSerializable)Series)
MultiIndexz1.4.0c                   t        |       ryt        |       ryt        |       ryt        j                  | d      st        | t        t        f      ryt        j                  | d      ryt        | t              ryt        |       ry	y)
a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberMdatetimemdurationanystring)
r   r   r   r   is_np_dtype
isinstancer   r   r   r   )xs    S/var/www/horilla/myenv/lib/python3.12/site-packages/pandas/io/json/_table_schema.pyas_json_table_typer)   5   sp    < 	q		!		C	 Jq?K2P$Q	C	 	A~	&		    c                   t        j                  | j                  j                   r| j                  j                  }t	        |      dk(  r:| j                  j
                  dk(  r!t        j                  dt                      | S t	        |      dkD  r1t        d |D              rt        j                  dt                      | S | j                         } | j                  j                  dkD  r:t        j                  | j                  j                        | j                  _        | S | j                  j
                  xs d| j                  _        | S )z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz-Index name of 'index' is not round-trippable.)
stacklevelc              3  >   K   | ]  }|j                  d         yw)level_N)
startswith).0r'   s     r(   	<genexpr>z$set_default_names.<locals>.<genexpr>n   s     !FQ!,,x"8!Fs   z<Index names beginning with 'level_' are not round-trippable.)comall_not_noner-   nameslennamewarningswarnr   r#   copynlevelsfill_missing_names)datanmss     r(   set_default_namesr@   e   s    
))*jjs8q=TZZ__7MM?+-  X\c!F#!FFMMN+- 99;DzzA11$**2B2BC

 K **//4W

Kr*   c                $   | j                   }| j                  d}n| j                  }|t        |      d}t        |t              r/|j
                  }|j                  }dt        |      i|d<   ||d<   |S t        |t              r|j                  j                  |d<   |S t        |t              rAt        j                  |j                        rd|d<   |S |j                  j                  |d<   |S t        |t               r|j                  |d	<   |S )
Nvalues)r8   typeenumconstraintsorderedfreqUTCtzextDtype)dtyper8   r)   r&   r   
categoriesrF   listr   rG   freqstrr   r	   is_utcrI   zoner   )arrrK   r8   fieldcatsrF   s         r(   !convert_pandas_type_to_json_fieldrT   }   s   IIE
xxxx"5)*E
 %)*-- &T
3m"i L 
E;	'

**f L 
E?	+EHH%E$K L  ((--E$K L 
E>	*!JJjLr*   c                   | d   }|dk(  ry|dk(  r| j                  dd      S |dk(  r| j                  dd      S |d	k(  r| j                  dd
      S |dk(  ry|dk(  rd| j                  d      r	d| d    dS | j                  d      r8t        | d         }|j                  |j                  }}t	        ||      }d| dS y|dk(  r;d| v rd| v rt        | d   d   | d         S d| v rt        j                  | d         S yt        d|       )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True, categories_dtype=object)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    rC   r$   objectr   rJ   int64r   float64r   boolr"   timedelta64r    rI   zdatetime64[ns, ]rG   zperiod[zdatetime64[ns]r#   rE   rF   rD   )rL   rF   z#Unsupported or invalid field type: )	getr   nr8   r
   r   registryfind
ValueError)rR   typoffsetfreq_n	freq_namerG   s         r(   !convert_json_field_to_pandas_typere      sG   R -C
h			yyW--	yyY//			yyV,,	
		
	99T?$U4[M33YYvuV}-F &&++IF)&)<DTF!$$#	E!i5&8# /7yAQ  5 ==z!233
:3%@
AAr*   c                R   |du rt        |       } i }g }|r| j                  j                  dkD  ryt        d| j                        | _        t	        | j                  j
                  | j                  j                        D ]&  \  }}t        |      }||d<   |j                  |       ( n$|j                  t        | j                               | j                  dkD  r3| j                         D ]  \  }	}
|j                  t        |
             ! n|j                  t        |              ||d<   |rf| j                  j                  rP|N| j                  j                  dk(  r| j                  j                  g|d<   n!| j                  j                  |d<   n|||d<   |r	t        |d<   |S )a  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.

    Returns
    -------
    dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> from pandas.io.json._table_schema import build_table_schema
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
    Tr,   r   r8   fields
primaryKeypandas_version)r@   r-   r<   r   ziplevelsr6   rT   appendndimitems	is_uniquer8   TABLE_SCHEMA_VERSION)r>   r-   primary_keyversionschemarg   levelr8   	new_fieldcolumnss              r(   build_table_schemarx      su   p } &FF::!lDJJ7DJ"4::#4#4djj6F6FG )t=eD	$(	&!i()
 MM;DJJGHyy1} 	@IFAMM;A>?	@ 	7=>F8%%+*=::"$(JJOO#4F< #'::#3#3F< 		 *|#7 Mr*   c                   t        | |      }|d   d   D cg c]  }|d   	 }}t        |d   |      |   }|d   d   D ci c]  }|d   t        |       }}d|j                         v rt	        d      |j                  |      }d	|d   v r|j                  |d   d	         }t        |j                  j                        d
k(  r,|j                  j                  dk(  rd|j                  _
        |S |j                  j                  D cg c]  }|j                  d      rdn| c}|j                  _	        |S c c}w c c}w c c}w )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )precise_floatrs   rg   r8   r>   )columnsrZ   z<table="orient" can not yet read ISO-formatted Timedelta datarh   r,   r-   Nr0   )r   r   re   rB   NotImplementedErrorastype	set_indexr7   r-   r6   r8   r1   )jsonrz   tablerR   	col_orderdfdtypesr'   s           r(   parse_table_schemar   F  sU   H M:E,1(OH,EF5vFIF	5=)	4Y	?B 8_X. 	f8??F  '!J
 	
 
6	BuX&\\%/,78rxx~~!#xx}}' $ I @Bxx~~:;X.A5BHHN I5 G&s   D=EE)r'   r   returnstr)r   dict[str, JSONSerializable])r   zstr | CategoricalDtype)TNT)
r>   zDataFrame | Seriesr-   rY   rq   zbool | Nonerr   rY   r   r   )rz   rY   r   r   )4__doc__
__future__r   typingr   r   r   r9   pandas._libsr   pandas._libs.jsonr   pandas._libs.tslibsr	   pandas._libs.tslibs.dtypesr
   pandas.util._exceptionsr   pandas.core.dtypes.baser   r^   pandas.core.dtypes.commonr   r   r   r   pandas.core.dtypes.dtypesr   r   r   r   pandasr   pandas.core.commoncorecommonr4   pandas.tseries.frequenciesr   pandas._typingr   r   r   pandas.core.indexes.multir   rp   r)   r@   rT   re   rx   r    r*   r(   <module>r      s   
 # 
   ) ) = 4 9        0
 4  -`0@JB^ #	Y
YY Y 	Y
 !Yx?r*   